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Abstract.

McDonald and Lowe [15] showed that cosines in a semanticespiseveral hundred
dimensions reflect human priming results for a wide rangeeofiantic and associa-
tively related words [16, Exp.2]. Previously, Lowe [11, l&@jgued that the intrinsic
dimensionality of semantic space is much lower, and that-dighensional structure
can be effectively captured in just two dimensions as th&asarof a neural map. This
paper provides a replication of McDonald and Lowe’s resintsvo dimensions us-
ing the Generative Topographic Mapping [2], a statisticatiotivated neural network
architecture for topographic maps.

1. Semantic Space

Semantic space model have proved very successful modedsnafrgic memory [9, 3].
A semantic space operationalizes the idea, initially itdiced in distributional linguis-
tics, that words are semantically similar to the extent thay behave in the same way
in text; verbs that subcategorize for the same sorts of aegisnand nouns that can
be modified by the same kind of adjectives are to that extanaaécally similar. Se-
mantic space representations use vectors of surroundindjeeaints as a substitute for
knowing the distributional profile and argument structureadvance [12]. Words with
similar vector representations share more similar linguisontexts and are thus more
semantically similar.

The success of semantic space models in modeling psych@tigphenomena
to a large extent vindicates the approach to meaning uridgrdlistributional linguis-
tics, but it also raises a number of technical questiongingldo the ‘non-parametric’
nature of the approximations made when constructing a spbasument structures
are known in advance then it is obvious how to measure siityildor any two words
look in each argument slot and compare the sorts of wordsdftiugre. Thinking of all
words as having subcategorization preferences may not lnediately intuitive but is
explicit in Link and Dependency grammar [8], and helps casemantic space work
to syntactic perspectives. When argument frames are netkmee count all surround-
ing words up to a maximum window size. The question is them hmany words do
we need to count to get a good approximation? Semantic spaeegctor spaces of
typically high dimensionality, so the the generalizatidrtlos question addressed in
this paper is: what is the appropriate dimensionality of hareemantic space?



2. PreviousWork

Landauer and Dumais [9] have argued that there is an optimmaber of dimensions
for psychological modeling, and that data of appropriateatision should be generated
by taking large numbers of word counts and subjecting thetmé&ar dimensionality
reduction. Their claim is that human semantic space is ofiyfldw dimension com-
pared to the dimensionality of vector data from a semantecspnodel. They estimate
[9, Fig.3] that the 300 directions of principal variance glibbe retained from the thou-
sands generated by their model to optimally predict huméaratieur.

The idea that the intrinsic dimensionality of data is tyficdower than its ob-
served dimensionality motivates Multidimensional Sa@liMDS) and Factor Analytic
approaches in psychology. MDS performs a similar functmméural models of to-
pographic map formation in computational neuroscienc&[5With the development
of the Generative Topographic Mapping (GTM; [2]), a norelin extension of Fac-
tor Analysis, these models are now not usefully distingedshRitter and Kohonen
[17] used a self-organizing map to project simple vectorespntations of word co-
occurrence counts onto a two dimensional map surface. &iaproaches have been
taken by Scholtes [18] and Lowe [11]. Implicit in this worktiee assumption that co-
occurrence data is inherently very low-dimensional.

3. Interpreting Semantic Space Models

There are two distinct ways to interpret semantic space fBodespace may be a
description of the lexical semantic structure of a languagéhis sense, constructing a
semantic space is a methodology for finding semantic streattEnglish using a distri-
butional similarity measure. Alternatively a semanticapenay be a theory of semantic
representation in people. On the first interpretation whistadces in a space correlate
reliably with human performance on some psychologicaltgri@sting measure we can
infer that there is sufficient statistical regularity in tiveguistic environment to be able
to perform the psychological task. However, for a compotai approach to psychol-
ogy this is only half the story; there needs to be anothenthebhow that information
is represented in the mind/brain. Semantic spaaabe psychological models: e.g. we
might assert that each person has vectors of lexical asgtseand performs similar-
ity computations on them to determine semantic similaHiywever, this interpretation
is not the one being tested when semantic distances ardatedavith a human ex-
perimental performance. When the Hyperspace Analoguenguage (HAL; [14]) or
Latent Semantic Analysis [9] is compared to human data tisen® analysis by sub-
jects, only by items. This is true of most previous work in seic space. There are no
subjects; we are testing a theory about items.

The work reported below treats neural network models asstbpnd thus doubles
as a theory of semantic representation, as well as a thedng @fitrinsic dimensionality
of semantic space itself.

The next section briefly reviews earlier work modeling asstbee and multiple
types of semantic priming using a semantic space of higredsion. The next section
shows how substantially the same results are obtained dithensionality of the data



is reduced dramatically. Finally we consider the implioas of this work for estimating
the dimensionality of human semantic space.

3.1 Experiment 1: Primingin High-dimensional Space

Moss and colleagues [16] showed that semantic priming sdourla wide range of se-
mantic relations, both with and without association. Stiswords named members of
the same taxonomic category (category coordinates),raititeral objects or artifacts,
or they were related functionally (functional items), thgh script or instrument rela-
tions. Moss and colleagues showed separate semantic aoaadis® priming effects
for all categories. They also showed that the semantic pgreffect was greater in the
presence of association (the associative boost).

McDonald and Lowe [15] demonstrated that Messal’'s results can be modeled
in a high dimensional space. We briefly review the details oflel construction and
results using the latest version of the model for comparisothe low-dimensional
results described below.

We constructed a semantic space from 100 million words ofBtiésh National
Corpus (BNC), a balanced corpus of British English [4]. Weetttors were generated
by passing a moving window through the corpus and colleatoygccurrence frequen-
cies for 536 of the most reliable context words within a 10 dvasindow either side
of each stimulus item. Context words were the same as thaskingrevious work
modeling graded and mediated priming [13]. The method foosing reliable context
words is described elsewhere [12, 13]. We used positive tltpaatios to measure the
amount of lexical association between each context wordeant of the experimental
stimuli. The odds ratio is well-known to be a measure of aisdion that takes chance
co-occurrence into account [1].

We also created vectors for 1000 filler words of frequencksatD00 to 2000 in the
BNC (114.55to 49.15 occurrences per million). Stimulusjfrencies ranged from 0.02
to 1639.23 per million, with a median frequency of 33.95 péditiom. 114 unrelated
primes were chosen randomly from the set of filler words

As in the original experiment we varied three factors: aigg@mn (associated, non-
associated), semantic type (category coordinate, fumaticelation) and relatedness
(related, unrelated). Semantic subtypes were nested Smheantic Type.

For the purposes of modeling priming, the cosine betweeimagnd target should
be inversely proportional to the corresponding reactiometi The size of a priming
effect is calculated by subtracting the cosine between thelated prime and target
from the cosine between the related prime and target. Ce$irehe unrelated prime-
target pairs was taken to be the cosine of the target withh@ngirime in the same
condition. Cosines are entered directly into analyses nawuae.

3.2 Resaults

Cosines in the semantic space are shown in Table 1. There masneeffect of relat-
ednessF(1,108) = 314.922, p < .001, and of associatiork (1, 108) = 16.433, p <
.001, replicating associative priming. There was also an atgon between association
and relatedness(1, 108) = 9.939, p < .01. This replicates the associative boost.



Associated Non-associated

Related Unrelated U-R Related Unrelated U-R

Cat. Coord. 0.553 0.173 0.379 0.458 0.163  0.295
Functional 0.547 0.181 0.366 0.394 0.168 0.226

Table 1: Cosines from the high-dimensional semantic spatteumrelated primes chosen ran-
domly from an alternative source. Bold face numbers areipgreffects for each semantic type.

We then considered the associated and non-associated 8emsantic priming oc-
curred in the associated conditiofi(1,54) = 205.972, p < .001 and in the non-
associated conditior¥(1,54) = 113.309, p < .001. The priming effect for category
coordinates appeared slightly larger than for functiotehis which is also consistent
with the human results, but this difference was not significa

Among the category coordinates semantically related paére more similar than
unrelated pairsF(1,52) = 165.567, p < 0.001. There was also associative priming,
F(1,52) = 5.607, p < 0.05. There was no associative booB{]1,52) = 2.623, p =
.111, and no other significant interactions. The associativesbdinl not occur due to a
low level of similarity between the associated artifacgts and their related primes.
The delicacy of the boost also follows human results.

Functional pairs also showed a semantic priming effé¢t, 52) = 154.771, p <
.001, a main effect of associatiof,(1,52) = 11.555, p < .01, and a reliable asso-
ciative boostF(1,52) = 8.661, p < .01. There was also a main effect of subtype,
F(1,52) = 4.58, p < .05, due to steadily decreasing amounts of similarity across
subtypes relative to a stable baseline (associated redatgst > associated related in-
strument> non-associated related scriptnon-associated related instrument).

Detailed analyses for each semantic subtype are repodedietre [12].

3.3 Discussion
The space replicates Mossal’s finding that semantic priming occurs for a wide range
of semantic categories, with and without association. \We ate an associative boost.

3.4 Experiment 2: Priming in Low-dimensional Space

In this experiment we use 20 GTM networks as subjects. 20 GTddels [2] were

trained on 1689 transformed semantic space vectors. The laumber of irrelevant
word vectors were intended give each network a better idélaeobverall shape of se-
mantic space, rather than just a small set of words of intel€0 words were the



filler from Experiment 1, 224 were from Moss’s materials, ahd rest were experi-
mental stimuli from 5 other priming experiments. Resultirthe latter are reported
elsewhere [13, 12].

The entire augmented set of 534-dimensional semantic sigaters was then trans-
formed linearly into 50 dimensions by 20 independently gatezl stochastic matrices
[6], one for each GTM model. Each GTM was initialized with dam parameters and
saw a distinct random mapping of the semantic space vectors.

Ideally each network would have been trained on vectors rgée@ by sampling
from a much larger corpus. However, this is computationakyremely demanding,
even were such a corpus available. Using newsgroups is dbfmsgxt step in this
research.

3.5 Random Mapping

Neural networks are often criticized for relying cruciadiy intelligent prior tranforma-
tions of the data. Consequently although principal compbaealysis of the vectors
would also reduce dimensionality to tractable levels, itilgaalso represent a substan-
tial modeling assumption that is not obviously motivateanfra neural perspective.
Random mapping reduces the dimensionality of the data tee tleat is tractable for
reasonable network training times while making the fewessible assumptions about
the nature of the input, save that it derives from vectorewicial associations.

Random mapping also introduces variability into the inpatadthat ensures that
no net trains on the same data set. The psychological irt@tpon of this process is
that networks are subjects that have been exposed to rotlghlyame language data
but with significant amounts of noise. We then test the cldiat representing this
information using topographic maps generates accuratiqgtiens about priming.

Any specific random mapping for the semantic space vectaosditdimensional
space is a 534« d matrix, R, with i.i.d. zero mean Normally distributed elements.
Each column ofR is normalized to unit length to create a non-orthogonalsakp
give an idea of how much structure is preserved in a randonpimgpKaski [6] has
shown that the inner product between two low dimensiongkgtmnsa; = Rh; and
a; = Rh; of high-dimensional unit length vectohg andh, is

a1Ta2 == h-lrhz + 1) (1)

whered is approximatelyV (0, 2/d). This result essentially defines an error bar on
similarity estimates in the low-dimensional space retativtheir ‘real’ values in high-
dimension$. It is intuitively surprising that similarities are (on aege) so well pre-
served by a completely random mapping; this phenomena deserves further atten-
tion.

3.6 Generative Topographic Mapping
The GTM is a non-linear extension of Factor Analysis wittosty similarities to the
Self-organizing map. It attempts to build a generative nhofithe variance structure in

! See Kaski's paper for error estimates for non-normalizeghtimensional vectors, and a de-
tailed derivation.



data pointa on the assumption that they are generated by a smooth nea-limapping
from a two-dimensional manifole. The GTM thus explicitly assumes that the intrinsic
dimensionality of the data is two-dimensional, and thaténifold structure is simply
noise. Clearly this is an extremely strong and falsifiabfuasption to make about even
50-dimensional data. Since the GTM defines a mapping fromvadimensional latent
space into the data space, it is straightforward to invéstritapping for any data point
to obtainp(x | a). The mean of this distribution is a point estimate of the pwitatent
space that is most likely to have generateth this respect the model is used similarly
to Factor Analysis.

To make specific predictions about priming effects, we cot@mposterior means as
described above for each related prime, unrelated primeaangét vector. Each mean
is a two element vector that describes a point in two-din@redispace. We take cosine
measures in this reduced space, just as in the high dimeaisiadel.

3.7 Reaults
Associated Non-associated
Related Unrelated U-R Related  Unrelated U-R
Cat. Coord. 0.689 -0.151 0.839 0.485 -0.250 0.735
Functional 0.690 -0.113 0.803 0.440 -0.134 0574

Table 2: Mean cosine similarity measures from the networkdosset al’s data with indepen-
dently chosen unrelated baseline. Bold numbers are priefiegts for each semantic category,
with and without association.

Mean similarity measures are shown in Table 2. There was a affdct of relatedness,
F1(1,19) = 2391.276, p < .001, F»(1,108) = 195.478, p < .001. There was also a
reliable effect of associatiofr; (1,19) = 94.703, p < .001, F»(1,108) = 7.703, p <
.01, replicating the associative priming effect. The assa@dtoost was significant by
subjectsF; (1,19) = 21.316, p < .001, Fy(1,108) = 1.949, p = .166.

There were main effects of semantic relatedness in bottteded and non-associated
conditions,F;(1,19) = 2358.761, p < .001, F»(1,54) = 103.68, p < .001 and
Fi(1,19) = 643.53, p < .001, Fy(1,54) = 92.124, p < .001.

The category coordinates showed a semantic priming effe¢t, 19) = 1754.725
,p < .001, Fy(1,52) = 104.371 , p < 0.001, and an associative priming effect,
Fi1(1,19) = 44.774 , p < 0.001, F9(1,52) = 4.647 , p < .05. No associative
boost appeared in either analysis due to the surprisinghelariming effect for non-
associated artifacts.



Semantic priming was present in the functional relatidng,1,19) = 892.731,
p < .001, Fy(1,52) = 96.693 , p < .001. Associative priming was significant across
subjectsF;(1,19) = 47.997 , p < .001, and marginally significant in the items anal-
ysis,Fo(1,52) = 3.403 , p = .07, The associative boost was significant for subjects,
F1(1,19) = 51.055 , p < .001, and approached significance in the items analysis,
Fy(1,52) = 3.168, p = 0.081.

Separate analyses for each semantic subtype are repaéechelre [12].

3.8 Discussion

Table 2 shows that low-dimensional simulation gave restg similar to those found

in the original experiment, and in its replication in highreinsions. As is typically

the case in dimensionality reduction, related items becomee similar. This can be

seen in Table 2 where priming effects are much larger, wisetlea unrelated baseline
is essentially unchanged. The reduction also brings owiquisly weak trends in the

data, e.g. the fact that the non-associated semantic giefiacts is much stronger for
category coordinates, and that instrument relations doewpiire association to prime
strongly.

4. Conclusion

Figure 1: Eigenvalues of the covariance matrix for the higlhensional semantic space vectors,
ordered by size.

Experiment 2 also suggests that the the intrinsic dimedityrof the semantic space
data is quite low. Another complementary way to see this Isdf at linear measures
of the variance structure. Figure 1 shows the eigenvaluéiseo€ovariance matrix for
the high-dimensional data, sorted by size. It is clear froenfigure that the majority of
the data variance extends in only a few directions. The fasidful of values contain
more than 80% of the total variance. Another way to undedsthis is to consider
linear reconstructions of the data: only a handful of reainbers representing data



projections onto the principal eigenvectors would be ng@gsto reconstruct this data
to 80% accuracy.

Looking at orthogonal directions of variance is a usefudiiag for understanding
the success of the GTM because the intrinsic dimensionafithe data can only be
smaller than a linear estimate would suggest. On the othet tiee procedure is only
approximate since the interpretation of eigenvalue stimgcin terms of variance com-
ponent holds only for jointly Normally distributed data. i§tassumption is unlikely to
hold exactly for semantic space vector elements.

In any case it is interesting to compare this to Landauer anchd@s’ claim that
several hundred dimensions are necessary for semantie.sppds possible that the
tasks used in that work require significantly different dimenality spaces than for
even fairly detailed priming studies. Replicating the Lanér and Dumais’ tasks in the
current framework is current work. But this is clearly noethase for this data. We
have also shown elsewhere that many other priming resuttsheacaptured in very
low-dimensional models [12]. These studies support thiencthat the dimensionality
of human semantic space may be very low indeed.
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