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Abstract.

McDonald and Lowe [15] showed that cosines in a semantic space of several hundred
dimensions reflect human priming results for a wide range of semantic and associa-
tively related words [16, Exp.2]. Previously, Lowe [11, 10]argued that the intrinsic
dimensionality of semantic space is much lower, and that high-dimensional structure
can be effectively captured in just two dimensions as the surface of a neural map. This
paper provides a replication of McDonald and Lowe’s resultsin two dimensions us-
ing the Generative Topographic Mapping [2], a statistically motivated neural network
architecture for topographic maps.

1. Semantic Space

Semantic space model have proved very successful models of semantic memory [9, 3].
A semantic space operationalizes the idea, initially introduced in distributional linguis-
tics, that words are semantically similar to the extent thatthey behave in the same way
in text; verbs that subcategorize for the same sorts of arguments and nouns that can
be modified by the same kind of adjectives are to that extent semantically similar. Se-
mantic space representations use vectors of surrounding word counts as a substitute for
knowing the distributional profile and argument structuresin advance [12]. Words with
similar vector representations share more similar linguistic contexts and are thus more
semantically similar.

The success of semantic space models in modeling psycholinguistic phenomena
to a large extent vindicates the approach to meaning underlying distributional linguis-
tics, but it also raises a number of technical questions relating to the ‘non-parametric’
nature of the approximations made when constructing a space. If argument structures
are known in advance then it is obvious how to measure similarity: for any two words
look in each argument slot and compare the sorts of words found there. Thinking of all
words as having subcategorization preferences may not be immediately intuitive but is
explicit in Link and Dependency grammar [8], and helps connect semantic space work
to syntactic perspectives. When argument frames are not known we count all surround-
ing words up to a maximum window size. The question is then: how many words do
we need to count to get a good approximation? Semantic spacesare vector spaces of
typically high dimensionality, so the the generalization of this question addressed in
this paper is: what is the appropriate dimensionality of human semantic space?



2. Previous Work

Landauer and Dumais [9] have argued that there is an optimal number of dimensions
for psychological modeling, and that data of appropriate dimension should be generated
by taking large numbers of word counts and subjecting them tolinear dimensionality
reduction. Their claim is that human semantic space is of fairly low dimension com-
pared to the dimensionality of vector data from a semantic space model. They estimate
[9, Fig.3] that the 300 directions of principal variance should be retained from the thou-
sands generated by their model to optimally predict human behaviour.

The idea that the intrinsic dimensionality of data is typically lower than its ob-
served dimensionality motivates Multidimensional Scaling (MDS) and Factor Analytic
approaches in psychology. MDS performs a similar function to neural models of to-
pographic map formation in computational neuroscience [5,7]. With the development
of the Generative Topographic Mapping (GTM; [2]), a non-linear extension of Fac-
tor Analysis, these models are now not usefully distinguished. Ritter and Kohonen
[17] used a self-organizing map to project simple vector representations of word co-
occurrence counts onto a two dimensional map surface. Similar approaches have been
taken by Scholtes [18] and Lowe [11]. Implicit in this work isthe assumption that co-
occurrence data is inherently very low-dimensional.

3. Interpreting Semantic Space Models

There are two distinct ways to interpret semantic space models. A space may be a
description of the lexical semantic structure of a language. In this sense, constructing a
semantic space is a methodology for finding semantic structure in English using a distri-
butional similarity measure. Alternatively a semantic space may be a theory of semantic
representation in people. On the first interpretation when distances in a space correlate
reliably with human performance on some psychologically interesting measure we can
infer that there is sufficient statistical regularity in thelinguistic environment to be able
to perform the psychological task. However, for a computational approach to psychol-
ogy this is only half the story; there needs to be another theory of how that information
is represented in the mind/brain. Semantic spacescanbe psychological models: e.g. we
might assert that each person has vectors of lexical associations and performs similar-
ity computations on them to determine semantic similarity.However, this interpretation
is not the one being tested when semantic distances are correlated with a human ex-
perimental performance. When the Hyperspace Analogue to Language (HAL; [14]) or
Latent Semantic Analysis [9] is compared to human data thereis no analysis by sub-
jects, only by items. This is true of most previous work in semantic space. There are no
subjects; we are testing a theory about items.

The work reported below treats neural network models as subjects and thus doubles
as a theory of semantic representation, as well as a theory ofthe intrinsic dimensionality
of semantic space itself.

The next section briefly reviews earlier work modeling associative and multiple
types of semantic priming using a semantic space of high-dimension. The next section
shows how substantially the same results are obtained if thedimensionality of the data



is reduced dramatically. Finally we consider the implications of this work for estimating
the dimensionality of human semantic space.

3.1 Experiment 1: Priming in High-dimensional Space

Moss and colleagues [16] showed that semantic priming occurs for a wide range of se-
mantic relations, both with and without association. Stimulus words named members of
the same taxonomic category (category coordinates), either natural objects or artifacts,
or they were related functionally (functional items), through script or instrument rela-
tions. Moss and colleagues showed separate semantic and associative priming effects
for all categories. They also showed that the semantic priming effect was greater in the
presence of association (the associative boost).

McDonald and Lowe [15] demonstrated that Mosset al.’s results can be modeled
in a high dimensional space. We briefly review the details of model construction and
results using the latest version of the model for comparisonto the low-dimensional
results described below.

We constructed a semantic space from 100 million words of theBritish National
Corpus (BNC), a balanced corpus of British English [4]. Wordvectors were generated
by passing a moving window through the corpus and collectingco-occurrence frequen-
cies for 536 of the most reliable context words within a 10 word window either side
of each stimulus item. Context words were the same as those used in previous work
modeling graded and mediated priming [13]. The method for choosing reliable context
words is described elsewhere [12, 13]. We used positive log odds-ratios to measure the
amount of lexical association between each context word andeach of the experimental
stimuli. The odds ratio is well-known to be a measure of association that takes chance
co-occurrence into account [1].

We also created vectors for 1000 filler words of frequency ranks 1000 to 2000 in the
BNC (114.55 to 49.15 occurrences per million). Stimulus frequencies ranged from 0.02
to 1639.23 per million, with a median frequency of 33.95 per million. 114 unrelated
primes were chosen randomly from the set of filler words

As in the original experiment we varied three factors: association (associated, non-
associated), semantic type (category coordinate, functional relation) and relatedness
(related, unrelated). Semantic subtypes were nested underSemantic Type.

For the purposes of modeling priming, the cosine between a prime and target should
be inversely proportional to the corresponding reaction time. The size of a priming
effect is calculated by subtracting the cosine between the unrelated prime and target
from the cosine between the related prime and target. Cosines for the unrelated prime-
target pairs was taken to be the cosine of the target with another prime in the same
condition. Cosines are entered directly into analyses of variance.

3.2 Results

Cosines in the semantic space are shown in Table 1. There was amain effect of relat-
edness,F(1; 108) = 314:922; p < :001, and of association,F(1; 108) = 16:433; p <:001, replicating associative priming. There was also an interaction between association
and relatedness,F(1; 108) = 9:939; p < :01. This replicates the associative boost.



Associated Non-associated

Related Unrelated U-R Related Unrelated U-R

Cat. Coord. 0.553 0.173 0.379 0.458 0.163 0.295
Functional 0.547 0.181 0.366 0.394 0.168 0.226

Table 1: Cosines from the high-dimensional semantic space with unrelated primes chosen ran-
domly from an alternative source. Bold face numbers are priming effects for each semantic type.

We then considered the associated and non-associated items. Semantic priming oc-
curred in the associated condition,F(1; 54) = 205:972; p < :001 and in the non-
associated condition,F(1; 54) = 113:309; p < :001. The priming effect for category
coordinates appeared slightly larger than for functional items which is also consistent
with the human results, but this difference was not significant.

Among the category coordinates semantically related pairswere more similar than
unrelated pairs,F(1; 52) = 165:567; p < 0:001. There was also associative priming,F(1; 52) = 5:607; p < 0:05. There was no associative boost,F(1; 52) = 2:623; p =:111, and no other significant interactions. The associative boost did not occur due to a
low level of similarity between the associated artifact targets and their related primes.
The delicacy of the boost also follows human results.

Functional pairs also showed a semantic priming effect,F(1; 52) = 154:771; p <:001, a main effect of association,F(1; 52) = 11:555; p < :01, and a reliable asso-
ciative boost,F(1; 52) = 8:661; p < :01. There was also a main effect of subtype,F(1; 52) = 4:58; p < :05, due to steadily decreasing amounts of similarity across
subtypes relative to a stable baseline (associated relatedscript> associated related in-
strument> non-associated related script> non-associated related instrument).

Detailed analyses for each semantic subtype are reported elsewhere [12].

3.3 Discussion

The space replicates Mosset al.’s finding that semantic priming occurs for a wide range
of semantic categories, with and without association. We also see an associative boost.

3.4 Experiment 2: Priming in Low-dimensional Space

In this experiment we use 20 GTM networks as subjects. 20 GTM models [2] were
trained on 1689 transformed semantic space vectors. The large number of irrelevant
word vectors were intended give each network a better idea ofthe overall shape of se-
mantic space, rather than just a small set of words of interest. 1000 words were the



filler from Experiment 1, 224 were from Moss’s materials, andthe rest were experi-
mental stimuli from 5 other priming experiments. Results from the latter are reported
elsewhere [13, 12].

The entire augmented set of 534-dimensional semantic spacevectors was then trans-
formed linearly into 50 dimensions by 20 independently generated stochastic matrices
[6], one for each GTM model. Each GTM was initialized with random parameters and
saw a distinct random mapping of the semantic space vectors.

Ideally each network would have been trained on vectors generated by sampling
from a much larger corpus. However, this is computationallyextremely demanding,
even were such a corpus available. Using newsgroups is a possible next step in this
research.

3.5 Random Mapping

Neural networks are often criticized for relying cruciallyon intelligent prior tranforma-
tions of the data. Consequently although principal component analysis of the vectors
would also reduce dimensionality to tractable levels, it would also represent a substan-
tial modeling assumption that is not obviously motivated from a neural perspective.
Random mapping reduces the dimensionality of the data to a level that is tractable for
reasonable network training times while making the fewest possible assumptions about
the nature of the input, save that it derives from vectors of lexical associations.

Random mapping also introduces variability into the input data that ensures that
no net trains on the same data set. The psychological interpretation of this process is
that networks are subjects that have been exposed to roughlythe same language data
but with significant amounts of noise. We then test the claim that representing this
information using topographic maps generates accurate predictions about priming.

Any specific random mapping for the semantic space vectors into d-dimensional
space is a 534� d matrix, R, with i.i.d. zero mean Normally distributed elements.
Each column ofR is normalized to unit length to create a non-orthogonal basis. To
give an idea of how much structure is preserved in a random mapping, Kaski [6] has
shown that the inner product between two low dimensional projectionsa1 = Rh1 anda2 = Rh2 of high-dimensional unit length vectorsh1 andh2 isaT1 a2 = hT1h2 + Æ (1)

whereÆ is approximatelyN (0; 2=d). This result essentially defines an error bar on
similarity estimates in the low-dimensional space relative to their ‘real’ values in high-
dimensions1. It is intuitively surprising that similarities are (on average) so well pre-
served by a completely random mapping; this phenomena alonedeserves further atten-
tion.

3.6 Generative Topographic Mapping

The GTM is a non-linear extension of Factor Analysis with strong similarities to the
Self-organizing map. It attempts to build a generative model of the variance structure in

1 See Kaski’s paper for error estimates for non-normalized high-dimensional vectors, and a de-
tailed derivation.



data pointsa on the assumption that they are generated by a smooth non-linear mapping
from a two-dimensional manifoldx. The GTM thus explicitly assumes that the intrinsic
dimensionality of the data is two-dimensional, and that off-manifold structure is simply
noise. Clearly this is an extremely strong and falsifiable assumption to make about even
50-dimensional data. Since the GTM defines a mapping from a low-dimensional latent
space into the data space, it is straightforward to invert this mapping for any data point
to obtainp(x j a). The mean of this distribution is a point estimate of the point in latent
space that is most likely to have generateda. In this respect the model is used similarly
to Factor Analysis.

To make specific predictions about priming effects, we compute posterior means as
described above for each related prime, unrelated prime andtarget vector. Each mean
is a two element vector that describes a point in two-dimensional space. We take cosine
measures in this reduced space, just as in the high dimensional model.

3.7 Results

Associated Non-associated

Related Unrelated U-R Related Unrelated U-R

Cat. Coord. 0.689 -0.151 0.839 0.485 -0.250 0.735
Functional 0.690 -0.113 0.803 0.440 -0.134 0.574

Table 2: Mean cosine similarity measures from the networks on Mosset al.’s data with indepen-
dently chosen unrelated baseline. Bold numbers are primingeffects for each semantic category,
with and without association.

Mean similarity measures are shown in Table 2. There was a main effect of relatedness,F1(1; 19) = 2391:276; p < :001; F2(1; 108) = 195:478; p < :001. There was also a
reliable effect of association,F1(1; 19) = 94:703; p < :001; F2(1; 108) = 7:703; p <:01, replicating the associative priming effect. The associative boost was significant by
subjects,F1(1; 19) = 21:316; p < :001; F2(1; 108) = 1:949; p = :166.

There were main effects of semantic relatedness in both associated and non-associated
conditions,F1(1; 19) = 2358:761; p < :001; F2(1; 54) = 103:68; p < :001 andF1(1; 19) = 643:53; p < :001; F2(1; 54) = 92:124; p < :001.

The category coordinates showed a semantic priming effect,F1(1; 19) = 1754:725; p < :001 ; F2(1; 52) = 104:371 ; p < 0:001, and an associative priming effect,F1(1; 19) = 44:774 ; p < 0:001; F2(1; 52) = 4:647 ; p < :05. No associative
boost appeared in either analysis due to the surprisingly large priming effect for non-
associated artifacts.



Semantic priming was present in the functional relations,F1(1; 19) = 892:731;p < :001; F2(1; 52) = 96:693 ; p < :001. Associative priming was significant across
subjects,F1(1; 19) = 47:997 ; p < :001, and marginally significant in the items anal-
ysis,F2(1; 52) = 3:403 ; p = :07, The associative boost was significant for subjects,F1(1; 19) = 51:055 ; p < :001, and approached significance in the items analysis,F2(1; 52) = 3:168 ; p = 0:081.

Separate analyses for each semantic subtype are reported elsewhere [12].

3.8 Discussion

Table 2 shows that low-dimensional simulation gave resultsvery similar to those found
in the original experiment, and in its replication in high-dimensions. As is typically
the case in dimensionality reduction, related items becomemore similar. This can be
seen in Table 2 where priming effects are much larger, whereas the unrelated baseline
is essentially unchanged. The reduction also brings out previously weak trends in the
data, e.g. the fact that the non-associated semantic priming effects is much stronger for
category coordinates, and that instrument relations do notrequire association to prime
strongly.

4. Conclusion
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Figure 1: Eigenvalues of the covariance matrix for the high-dimensional semantic space vectors,
ordered by size.

Experiment 2 also suggests that the the intrinsic dimensionality of the semantic space
data is quite low. Another complementary way to see this is tolook at linear measures
of the variance structure. Figure 1 shows the eigenvalues ofthe covariance matrix for
the high-dimensional data, sorted by size. It is clear from the figure that the majority of
the data variance extends in only a few directions. The first handful of values contain
more than 80% of the total variance. Another way to understand this is to consider
linear reconstructions of the data: only a handful of real numbers representing data



projections onto the principal eigenvectors would be necessary to reconstruct this data
to 80% accuracy.

Looking at orthogonal directions of variance is a useful baseline for understanding
the success of the GTM because the intrinsic dimensionalityof the data can only be
smaller than a linear estimate would suggest. On the other hand the procedure is only
approximate since the interpretation of eigenvalue structure in terms of variance com-
ponent holds only for jointly Normally distributed data. This assumption is unlikely to
hold exactly for semantic space vector elements.

In any case it is interesting to compare this to Landauer and Dumais’ claim that
several hundred dimensions are necessary for semantic space. It is possible that the
tasks used in that work require significantly different dimensionality spaces than for
even fairly detailed priming studies. Replicating the Landauer and Dumais’ tasks in the
current framework is current work. But this is clearly not the case for this data. We
have also shown elsewhere that many other priming results can be captured in very
low-dimensional models [12]. These studies support the claim that the dimensionality
of human semantic space may be very low indeed.
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