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Event data, the sequences of dated categorised events between identifiable actors typically har-
vested from newswire, are a vital source of information about interacting political actors (Quarterly,
1983; Schrodt and Gerner, 2001; Schrodt, 2012). They offer a finer time scale and greater actor
and spatial specificity than perhaps any other systematic data source. From a statistical perspective
they are also undeniably awkward (see Schrodt, 1994, for useful discussion).

As data, events are inherently nominal — an event of some type occurs or it does not. When
extracted from newswire, events are typically observed on at most a daily basis. In dyadic analyses,
with which this paper is mostly concerned, event data therefore constitute multivariate time series
count data. This kind of data is notoriously hard to model directly.

When the variety of possible events is relatively small then some existing count data time series
models can be applied directly or with mild extensions (e.g. Brandt and Sandler, 2012). However,
for most researchers counts of events are seldom interesting in themselves, so some form of scaling
and aggregation is applied to create interpretable quantities of interest, e.g. the level of cooperation
in a dyad (Azar, 1980; Goldstein, 1992; Shellman, 2004a) or the conflict carrying capacity of a state
(Jenkins and Bond, 2001). But the scaling process as it is currently performed, and the awkward
nature of the data lead to immediately to questions: how should events be aggregated? should they
be numerically scaled? and if so how? And there are well-known paradoxes: e.g. how can any
number of pessimistic comments be equivalent to a bombing according to any event scale? What is
the relationship between numerical conflict scores and the event data to which it is applied? Can
the scaling schemes currently in use be derived or validated from event data itself?

This paper attempts to shed some light on these paradoxes and provide principled answers to
the questions by sketching a statistical framework for thinking about event data based on measure-
ment modelling. In the first section of the paper review existing event aggregation problems and
paradoxes. The next section shows in two steps how measurement considerations might defuse
them and offers state space time series models as a practical realisation of the approach. In the final
section of the paper I use measurement models originally designed for legislative text analysis to
infer a conflict scale from mildly aggregated event categories and show that it gives nearly identical
results to the standard Goldstein (1992) scale that was derived from expert judgements.

Treating event data analysis as a measurement problem is not novel — indeed the approach is
familiar from other parts of the political science landscape (Clinton et al., 2004; Pickup, 2009),
but previous event research has worked with very specific models (Schrodt, 2006; Bond et al.,
2004; Schrodt, 2007, 2011, e.g.), when it has not simply tried to force event data analysis into
a regression based time series framework. Rather than present one more model this paper is an
attempt to map a wider range of measurement possibilities and highlight the consequences of a
measurement perspective for event data analysis in two areas: event aggregation and inductive
conflict scale construction.

*Will Lowe is Senior Researcher at The Mannheim Centre for European Social Research (MZES). He can be reached at
will.lowe@uni-mannheim.de This paper has benefited from comments at the Turkish Event Data Workshop in December
2011.
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1 Puzzles about event data

When multiple actors interact intermittently in multiple places in multiple ways some form of ag-
gregation is always necessary. Yonamine (2011) is a comprehensive review of existing actor, action,
and temporal aggregation possibilities. Spatial (dis)aggregation issues are well discussed in Shell-
man (2004b). Here I concentrate on time and action aggregation issues.

1.1 The necessity and hazards of aggregation

To perform a time series analysis it is necessary to choose a suitable time unit over which to model
actors’ interactions, e.g. using a vector autoregression (VAR, Liitkepohl, 1990). Unfortunately, it
is well-known that VAR models give different substantive results when temporal aggregation is
altered, e.g. from week to month to quarter (Shellman, 2004b, for examples and discussion). This
should not be surprising; lower frequency observations typically mask actor dynamics at higher
frequencies. Indeed it is quite rare for time series structure to be maintained at multiple aggregation
levels. Consequently, methodological advice is to disaggregate as far as possible so as not to lose
this information (e.g. Freeman, 1989).

However, VAR approaches, in common with all methods that define relationships in terms of
events and lags, also seem to require some aggregation in order to avoid missing data problems.
Models for higher frequency observations will require more lags than those formulated at lower
frequencies. This can be problematic for event data because it is very likely that there are no
observed events in some set of previous time periods. In a VAR framework this means that all
observations in that time step are dropped from the analysis. Decreasing temporal aggregation
therefore leads to increasing missing data problems. What then to do about missing data?

Current event data practise is often to ‘live with’ the possibility of missing or underestimating
the strength of relationships (and perhaps to gesture hopefully at contemporaneous correlations,
Goldstein and Pevehouse 1997, e.g.). Alternatively, assert that the variable of interest is net conflict
or cooperation, replace time periods of no observations with a zero and fit a VAR model regardless.
Or both. Replacing empty periods with a zero in non-count data is effectively imputing missing data
with a constant so it is hard to see how it can avoid serious bias (Honaker and King, 2010).

1.2 Criticism

Most scaled event data is summed or averaged within a time period before analysis, so we treat
criticisms of these two practices in turn. The practice of aggregating scaled event data and then
running VAR-type models on it has been criticised on methodological grounds almost since its in-
ception. An early example is the Folk Criticism, named because it is a correct observation but no
one can quite remember where they saw it first.

Folk Criticism: the ‘sum problem’

The ‘Folk Criticism’ (FC) notes that in summed scaled event data, multiple less conflictual events
may be numerically identical to or greater than a single highly conflictual event. This is a problem
when the numbers generated by the aggregated scaling process are intended to represent some
continuous measure of an actor relationship at a time. The FC is also an example of what Yonamine
(2011) describes as ‘the sum problem’

Consider two months, one with little dialogue but actual violence, and one with no
violence but considerable negative dialogue. By summing the Goldstein values, the



latter month could appear more conflictual than the first, even though it experience no
actual conflict.

Or as Schrodt (2007, and elsewhere) more succinctly puts it in a discussion of COPDAB scaling:
“three riots equals one thermonuclear war”.

In general, the FC simply points out the inconsistency between the substantive interpretations
of numerical conflict-cooperation measures at different levels of analysis and it will apply to any
procedure that assigns numbers to individual event codes and also sums them.

The mean problem

A natural alternative to summing is to take an average of the event scores. This leads to a related
problem, labelled by Yonamine as the ‘mean problem’:

Since it is obvious that a month with 90 “-10 events” is more conflictual than a month
with only 30 “-10” events, taking the mean score can lack external validity.

Taking an average does maintain the event-level substantive interpretation at all levels of analy-
sis, but at the cost of throwing away information. The nature of the information thrown away is
considered in more detail below.

It is interesting to note that the ‘mean problem’ occurs even in the construction of scores for event
types. In Goldstein (1992) experts disagreed about whether surrendering and yielding position
(WEIS event codes 011 and 012 respectively) were strongly cooperative or strongly conflictual. This
yielded an expert average score that was mildly positive and expert judgement standard deviations
that were around six times larger than any other event code. Subsequent researchers have been
sanguine about this, despite the relatively high frequency of surrendering and retreating occurring
in conflict dyads.

Another aspect of basically the same problem is Yonamine’s ‘single scale problem’:

“non-injury destructive action” (a -8.3 on the Goldstein scale) and a “extend military
assistance” (a +8.3 on the Goldstein scale) occur between the same actors. The sum
and the mean of these two events equals 0, which is the same score that a day with no
events receive.”

There are actually two problems here: first, the scaled events cancel out under summing or av-
eraging. Moreover, this must be a problem for any final value that is itself interpretable on the
event scale, not just zero. In the second, there is no way to distinguish between the absence of an
event coded as zero, a single actual event of neutral valence, and an arbitrary set of score-balanced
events.

Yonamine’s solution — splitting into two scales, one for conflictual events and one for cooperative
events — apparently solves this problem and has been argued for by Pevehouse (2004) on theoretical
grounds. However, exactly the same issues arise with separately scaled quantities. An absence
of cooperative events may still be coded as zero on the new cooperation scale but zero is also
interpretable as the minimum possible level of cooperation. This cannot be a solution; now the
constant that is imputed is complete lack of cooperation, rather than a neutral action on the original
single scale.

To review, the Folk Criticism notes that there is no stable interpretation of summed scaled event
data that also holds for individual events. The mean problem indicates that averaging instead loses
information. Temporal aggregation hides actor dynamics, but disaggregation leads to missing data,
which is imputed with zeros. How then should we treat scaled event data to avoid these issues?



2 A measurement approach to scaled event data problems

The first step to solving these problems is to identify what scaled event data is data about. Consider
a single dyadic time series. In applying, e.g. the Goldstein scale, we are implicitly using event data
to learn about the underlying level of conflict and/or cooperation in a dyad. This is never observed
directly, not only because we rely on a news agency and then an information extraction system
to recover the events, but also because events themselves are not conflict level, they are only its
indicators. This is why we wanted a scale.

The Goldstein scale itself is a simple but incomplete measurement model; it takes an event as
input and generates a decontextualised conflict score valid for that event type. As a stipulative
measurement model the Goldstein scale is non-generative, has no parameters, and was ‘fitted’ di-
rectly to a small number of expert judgements rather than a large amount of conflict data, but it
is a measurement model nevertheless. It is incomplete because event data arrive in time units that
often contain multiple events. A factor analysis model applied to subject’ survey responses will gen-
erate a subject score from any number of completed items, but we have to decide for ourselves how
to combine multiple events and promptly get into the summing and averaging troubles described
above.

Turning to the time periods within which events are observed, when we choose the length of
a period we are, again implicitly, trying to identify a sampling period within which the underlying
conflict level is stable. Making this decision allows us to treat multiple events in a period as repeated
measures of a fixed underlying quantity.

Slightly more formally, assume that there exists an unobserved time series of true conflict levels
x, for 1 <t < T observed at suitable time intervals. We observe a sequence of sets of Goldstein
scored events {y1,..., Yy, }; where N, is the number of events observed at t, possibly equal to zero
when nothing is observed.

It is plausible to assume that x, causes the events that are reported at t. In the best case, events
and therefore their scores are conditionally independent given x. This is a standard measurement
assumption sometimes described as ‘local independence’. Local independence implies that any
number of events can appear and larger values of N, offer more precision in about x. At the other
extreme, if no events occur the measurement framework leaves no doubt that there is some level
of conflict; we simply do not at that moment get to observe it. These observations immediately
provide a way to diagnose some event scaling problems.

2.1 Summed scaled scores

Summing scores are simply inappropriate: x, has, by definition, the same interpretation and range
as a single Goldstein score. But no sum involving multiple scaled events will be interpretable this
way because its possible range is between N, times the maximum or minimum of the original scale’.

Why then did summed scores seem like a good idea? Presumably for their similarity with the
raw form of the data as a multivariate count data. Indeed if we want to model count data, then
exactly opposite conclusions apply: We should sum occurrences because they are naturally counts
(although we should not scale them) and imputing zero when no events of a particular type are
observed is in this case potentially correct.? It is possible to infer scalar x from a vector of events
counts, and I do so in the second part of the paper, but simple summing is not the right way to do

!Actually we can work with a sum of scaled events at t, provided we take into account the fact that (again under
independence) this quantity will have time-dependent observation measurement variance v,N,.

2A physics analogy may be helpful: counts are extensive quantities so they can be added but conflict scores are, if the
argument above is correct, intensive so they should be averaged. There is also the ‘stock’ versus ‘flow’ terminology from
systems engineering if you prefer an econometric version of a similar distinction (Harvey, 1991).



Proportion
0.15 0.20 0.25
| |

0.10
|

0.05
|

TTTTTTTTTTTTTITTITTIIT T T T O I I I I
0 3 6 9 12 16 20 24 28 41 51

0.00
|

Weekly report counts (Serbia—Bosnia)

Figure 1: Weekly report counts (N,) for Serbian actions to Bosnia, January 1991 to December 1995.

it. Mechanically it even involves a weighted average of event scale scores. Just not this one.

2.2 Averaged scaled scores

Consider instead averaging scaled event scores. Regardless of any model of x itself, as N, in-
creases we have more information to estimate it. In particular, if we summarise the observations
at {y1,...,yn,}; with a mean y, and denote the variance of each event measurement is v,, then a
reasonable level of uncertainty (assuming independence) for y, is v,/N,.

By working instead with y, we seem to fall directly into the mean problem, but in fact provide
an analysis of it. In Yonamine’s example a month with N, = 3 events scored -10 is still estimated
to be on average just as conflictual as a month with N, = 30 identically scored events. What differs
between these two cases is that we should be ten times more certain that x, is close to -10 in the
second than in the first case. The mean problem is therefore only a problem if the time-dependent
reduction of observation measurement uncertainty is not represented in subsequent analysis.

2.3 Consequences

Will this matter in real data? Using data on Serbia’s interactions with Bosnia fromGoldstein and
Pevehouse (1997), Figure 1 shows that in the Serbia-Bosnia dyad at weekly aggregation there is
considerable variation in N, across the conflict period. While most of the weeks with no events
are at the beginning of the period the remaining variation is spread across the subsequent conflict.
Consequently the conflict level is measured much more precisely in some weeks than others.

A simple way to determine the consequences of the lack of variable N, is to reanalyse some



Table 1: Bosnian conflict ‘threats’ phase (2/1994-12/1994) under different measurement assump-
tions. The dependent variable dyad is marked above each column of coefficients. Dyads are labelled
S: Serbia, I: International, B: Bosnia. Bold face dyads are predicted by dyad scores in the previous
week. The second and third columns are regression coefficients and T-test p-values for a VAR(1)
model.

Ve X N, N, Ve N,-weighted y,

IS IS IS IS

IS -0.19 0.39 IS 0.32 0.08 IS 0.07 0.67 IS -0.02 0.91
SI -0.36  0.45 SI -0.39 0.23 SI -0.17 0.36 SI -0.26 0.16
SB 0.93 0.00 SB 0.82 0.01 SB 0.11 0.36 SB 0.39 0.00
SI SI SI SI

IS 0.03 0.78 IS 0.15 0.20 IS 0.05 0.79 IS 0.14 0.34
SI -0.24 0.29 SI 0.18 0.37 SI -0.39 0.04 SI -0.39 0.01
SB 0.22 0.07 SB  0.15 0.43 SB  0.01 0.92 SB 0.13 0.22
SB SB SB SB

IS -0.24 0.09 IS -0.08 0.45 IS -0.36 0.11 IS -0.25 0.25
SI 0.46 0.14 SI  0.17 0.39 SI 0.10 0.66 SI 0.05 0.82
SB 0.56 0.00 SB 0.44 0.02 SB 0.46 0.00 SB 0.56 0.00

existing data. Here we replicate® some of Goldstein and Pevehouse’s Table 3. This is a dyadic
analysis of the interaction between actors in the Bosnia conflict. Tables 1 and 2 show four analyses
of the periods 2/1994-12/1994 and 12/1994-7/1995 respectively. The paper’s original analysis
is in the first column, treating weekly summed Goldstein event scores (by definition y,N,) as the
dependent variable of a VAR(1) model. The second analysis tests a claim by Schrodt that “the
frequency of coded events alone is the primary factor that differentiates the major political features
of the data ”(Schrodt, 1994, p.17). Here the dependent variable is simply N,. The next column
treats jy, as the dependent variable without taking into account the extra precision implied by N,,
and the final column is a weighted least squares analysis that takes into account that the dependent
variable ¥, is an average of N, terms.

Comparing the results in Table 1, the N;-model does show predictable similarities to the orig-
inal analysis because N; is a large part of the variation in the observations. However it misses
significant negative autocorrelation in Serbia’s treatment of international actors dyad that all other
models pick up, presumably because it cannot distinguish positive and negative, only fewer and
more events. When events are of mixed type results predictably diverge. Turning to Table 2 both
models that use N, find positive reciprocity between SI and IS but neither average based model
does. Conversely both average based models find a coordination between international actors’ and
Bosnian treatment of Serbia that no N, based model does. While these differences are not huge,
they matter substantively. Predictably these analyses also suggest that the ¥, models that do not
take into account variable event coverage are less efficient.

What these tables hide are model diagnostics. Goldstein and Pevehouse focus on serial auto-
correlation and lag specification tests. However, ordinary diagnostics e.g. prediction vs residu-
als, QQ-plot, leverage and influence statistics all show that N;-models are badly specified. This is
not surprising — constructing an conditionally Normal data series out of N,, which are counts and

3The replication data does not replicate the exact numbers in the paper, probably due to a discrepancy in the actor
coding. The replication materials have more actors and events than mentioned in the paper.



Table 2: Bosnian conflict ‘promises’ (12/1994-7/1995) phase under different measurement as-
sumptions: The dependent variable dyad is marked above each column of coefficients. Dyads are
labelled S: Serbia, I: International, B: Bosnia. Bold face dyads are predicted by dyad scores in the
previous week. The second and third columns are regression coefficients and T-test p-values for a
VAR(1) model.

Ve X N, N, Vi N;-weighted y,

IS IS IS IS

IS 0.21 0.45 IS 0.54 0.08 IS 031 0.10 IS 0.13 0.35
SI 0.01 0.97 SI -0.07 0.80 SI 0.14 048 SI 0.18 0.31
SB 0.09 0.72 SB 0.09 0.77 SB  0.16 0.24 SB 0.12 0.33
BS 0.26 0.67 BS -0.75 0.22 BS 0.20 0.12 BS 0.32 0.00
SI SI SI SI

IS 0.54 0.00 IS 0.72 0.00 IS 0.20 0.40 IS 0.32 0.15
SI 0.05 0.80 SI  0.13 0.53 SI -0.03 0.92 SI -0.15 0.61
SB -0.15 0.37 SB -0.50 0.04 SB  0.13 0.47 SB 0.01 0.93
BS 0.12 0.74 BS -0.07 0.87 BS 0.10 0.54 BS 0.07 0.59
SB SB SB SB

IS 0.15 0.43 IS 0.18 0.37 IS 041 0.11 IS 0.34 0.18
SI 0.19 0.44 SI -0.02 0.90 SI -0.11 0.70 SI -0.08 0.78
SB 0.27 0.16 SB 0.42 0.05 SB -0.04 0.83 SB -0.01 0.95
BS 0.57 0.20 BS 0.01 0.97 BS 0.08 0.66 BS 0.15 0.31
BS BS BS BS

IS -0.05 0.56 IS -0.15 0.08 IS 0.68 0.03 IS 0.51 0.04
SI -0.01 0.90 SI 0.17 0.04 SI -0.55 0.11 SI -0.30 0.29
SB 0.16 0.05 SB  0.22 0.02 SB  0.23 0.31 SB 0.30 0.09
BS -0.26  0.15 BS 0.12 0.52 BS -0.19 0.38 BS -0.22  0.21




therefore have variance increasing with mean, creates strongly heteroskedasticity and clear outliers
when important heavily reported events occur. In this data outlying and high leverage weeks are
connected to surges of violence in Srebrenica, Sarajevo, Gorajde, and to NATO use of force. In
contrast, the y,-based measures pass all the regression diagnostics.

A weighted average analysis only solves half the problem though. What to do about periods
when no events occur? In the models above these observations are simply dropped. A better
strategy is to model both the underlying level and the measurement process together.

2.4 Models for intermittently observed scaled event data

The measurement considerations above suggest a simple class of models for conflict levels derived
from the state space time series framework (Durbin and Koopman, 2001; Harvey, 1991). In the
simplest such model x is given Markov dynamics to define a dynamic measurement model that
takes into account aggregation. The stream of events for a single dyad, assuming a fixed but possibly
unknown variance v for scaled observations is then

Xep1 =X T +Me g 1 ~ Normal(0,Q)
Ye=Fx +e€ € ~Normal(0,v/N,)

where in this simple situation F = 1. The ‘local level’ version of this model also sets T = 1 which
giving x random walk dynamics. For known Q and v the ‘state’ x is estimated by Kalman filtering to
getx; .| ¥1...¥, and smoothing to get x; | ¥; ...y, which is the best estimate of the path of x.
Kalman filtering provides an iterative way to compute the likelihood of the data under the model,
so it can also be used to estimate the free parameters in the model T, Q, and v using Newton or
Expectation Maximisation methods (Shumway and Stoffer, 2000).

This model takes into account that fact that x, has a value, regardless of whether there are
observations at t by separating out a dynamic model for conflict in the first line from a measure-
ment model for observations in the second line. This setup is designed for a predetermined scale
like Goldstein, so the mapping (defined with F) is trivially linear and the weekly reports affect
measurement uncertainty by a factor of 1/N,.

Figure 2 shows the result of applying this model to estimate conflict levels in the Serbia-Bosnia
dyad. Pointwise uncertainty is marked in grey. Average conflict scores are shown as grey points.
The very large uncertainty at the beginning of the series indicates a diffuse prior on conflict level
before the series begins which is not much constrained by events until about half way through 1992.
Nevertheless the figure shows fairly clearly the course of Serbian action to Bosnia, from a period
of persistently hostile interactions from mid 1992 starting with a first dip at the beginning of the
siege of Sarajevo through mid 1993 then moving to an alternating pattern of cooperation, renewed
hostility and broken peace plans and ceasefires, to attacks on Gorazde in March/April 1994. The
final dip in 1995 is the fall of Zepa, Tusla and the the capture of and massacre at Srebrenica,
followed shortly by NATO air strikes which apparently lead to decreasing hostility until the peace
accords at the end of the year.

Unsurprisingly the standard deviation of posterior is tightly connected to the density of coverage
(r=-0.89, p<.001) with more certainty expressed about peaks of cooperation and conflict since
these are more densely reported. Increasing coverage also forces the estimated conflict level to
follow the observations more closely and smooth over time periods less, as can be seen by comparing
mid-1992 to mid-1993 with the much more variable remainder of the series as Western powers
become more involved, more force is applied, and reporting is densest.

It is useful to review how missing data problems are dealt with in this formulation. Because
x varies regardless of whether it is observed, if there are no observations at, say k, then the es-
timate of x; is not a posterior combination of the prior prediction %;x_; from the previous week
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Figure 2: Conflict cooperation levels for the Serbia-Bosnia dyad. Bold black line is the estimated
mean conflict level and grey regions are 95% posterior intervals.

and data y with variance v/N; from the current week but simply the prediction from last week. If
time periods pass without data % follows the (here trivial) dynamics specified by T but with uncer-
tainty increasing with every observationless period. The consequence is that missing observations
are assigned a distribution. This can be used for any purpose, and the missing observations are
effectively integrated out of inferences about other parameters. State distributions can also be used
for multiple imputation (Tusell, 2012).

There are in fact four weeks in this data where no events occur, but these are sufficiently few
that the expansion of the posterior is not easily visible in graph.

2.5 Model assumptions

The purpose of this paper is not to construct and fit a complete multivariate formulation of the
simple dyadic model above, although that is future work, but rather to make clear the general con-
sequences of a measurement approach to event data. The model above provides enough structure
to show the solutions to the basic conceptual problems and paradoxes of aggregation described
earlier, so I turn now the assumptions that are required.

Markov dynamics Scalar T implies particularly if it is set to 1. To relax this assumption T can be
given more structure using a matrix with suitably transformed F. Variations on this theme to add
extra series, seasonal terms, etc. constitute most of the work in state space time series analysis and
we do not pursue them further here.

A natural extension would be to model the vector of mean conflict scores and estimate a full
rank T. Off diagonal terms estimate cross dyad interactions and diagonal terms autoregressive



tendencies. This would be the equivalent of the VAR(1) model only taking into account variable
measurement error. This is future work.

Scale observation variance is constant The model assumes that v is fixed but unknown. In this
formulation separate event scale estimates cannot be estimated because the Goldstein (1992) score
simply stipulates that certain events get certain scores. It is, however, possible to use the expert
judgement variances extracted from Goldstein’s Table 1 instead, although with only eight experts
they are unlikely to be precise, and are in any case subject to the caveat regarding event codes 011
and 012 noted earlier.

A more promising alternative is to build a less trivial measurement process that connects a
vector of event counts observed weekly, to x. This is what the second half of the paper shows how
to do outside the time series model context.

Report density is unrelated to conflict level The model also assumes that the sequence of event
counts Nj ... Ny is exogenous. Prime facie selection bias considerations suggest this will not hold
(see e.g. Reeves et al., 2006; Woolley, 2006, for reviews). However, the Bosnia data the hostility
of events, as measured by ¥,, and intensity of coverage as measured by N, are not significantly
correlated* (r=-0.11, p=0.16).

Substantively, this corresponds to a scenario where the news agency in question (here Reuters)
maintains a more or less continuous presence in the former Yugoslavia and sends regular reports.
Of course, the exogeneity claim is, like all such claims, very hard to test directly.

Conflict level is scalar We also assume that x is continuous, rather than, e.g. a discrete un-
observed state. If x were a nominal variable with K possible values, the model above would be
renamed a Hidden Markov model (Zucchini and MacDonald, 2009), but its fundamental measure-
ment features would be unchanged. Indeed all the measurement problems described above would
have the same solutions: the ¥ and N sequences would still be the fundamental forms of data,
conditionally normal given x as above, missing data would be dealt with the same way by provid-
ing a distribution over possible values of x; each element of which would become closer to 1/K as
observation free time periods passed.

3 Measurement models for constructing event scales

The previous sections treated Goldstein’s scale as given and considered how best to deal with it in a
time series context to avoid aggregation problems. I now turn to the question of how to determine
a scale from event data itself without polling experts. The raw data is now not expert-scaled events
but the vector of event counts aggregated in each time period and the task is to learn a conflict
scale.

Some previous work has taken a measurement modelling approach. In particular Schrodt
(2007) used Rasch and Item Response Theory (IRT, Baker and Kim, 2004) models to determine
a scale inductively from event category counts. Because these model work with 0/1 data this re-
quired transforming the stream of event category counts into zeros and ones. This was done by
thresholding the raw counts based on whether they exceeded their monthly means, applying an
IRT model and treating the latent variable as the induced scale values for each observation.

“in levels or logs of N,
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While Schrodt reported ‘mixed results’, and correlations with existing scales were weak this is
nevertheless a very promising direction. I show below that with a minor change of measurement
model class, event counts can be used directly to recover the Goldstein scale.

3.1 Measurement models for inducing a conflict scale

The assumption of all models is, as discussed above, that the elements of the vector of observations
for each time period are conditionally independent given the unobserved x. Unlike the simple
observation model above where the expected value of y, is simply x, with variance proportional to
N,, IRT models assume individual logistic regressions of observations on x,. Unit changes in x then
lead to slope parameter-sized changes in the log odds of seeing a 1 rathe than a 0. In Schrodt’s
work that is, of a particular event category occurring more often than its monthly average.

There are two broad problems with this approach. First, events are multivariate count data,
so reducing them to 0/1 loses information. In particular, it looses the information that increased
reporting density offers. Second IRT models assume a Guttman-type structure in the relationship
between event classes and x, that is, that there is an ordering of event categories such that the
odds of seeing each event increases with x. As Schrodt observes, this may not be reasonable for
event codes: conflict level and event occurrences are probably not structured in the same way as
ability and question difficulty: easier questions are always answered by more able students but
more cooperative actions are not guaranteed between high conflict actors.

A more promising measurement assumption from unfolding or ideal point models that assume
that both x and the event category scores exist on the same scale and that as x moves closer to an
event category score, that event appears more often.

Fortunately, unfolding-style models for count data exist and are applied widely for the task of
extracting policy positions from text. The two problems are very similar. In event data scaling we
are interested in extracting a scalar conflict measure from a set of event counts and in text scaling
we are interested in extracting a measure of left-right position from a set of word counts. Suitable
models in either domain explain both what the mapping is from x to observed counts and provide
values for the unobserved x, ideally with some measure of uncertainty. Two such models are
Wordfish (Slapin and Proksch, 2008; Monroe and Maeda, 2004), previously studied by (Goodman,
1979, 1985) as the ‘RC Model’ and Wordscores (Laver et al., 2003) which is a constrained version
of correspondence analysis (Lowe, 2008).

3.2 Two scaling models for events

The connection between the multinomial unfolding model and the Wordfish text scaling model is
not well-known in the literature, so I review it briefly here. Wordfish models a contingency table C
of documents and words. When scaling events these are time periods and event classes respectively,
so they are indexed t and j. Each row sums to N,. Wordfish assumes that

log E[C;;] = a, +v; +x.B;

The term a, ensures that N, is reflected in the model’s fitted values. Consequently, since N, is known
(and treated as exogenous, as discussed above) then we can condition on it directly. The resulting
form is multinomial with new parameters linearly connected to the ones above and arranged into
logits of j versus j' (see Lowe and Benoit, 2011, for an complete development).

Estimates of x are not affected by working with the model as a multinomial logistic regression
with ‘independent’ variable x or in the form above with no row sum constraint but nuisance pa-
rameter «,. (Indeed when x is observed, the formulation above is a computationally easier way to
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Table 3: Unit normalised event category parameters () from Wordfish and CA models. Categories
are constructed by aggregating the WEIS cue categories in the second column.

Category WEIS cue categories Beta (Wordfish) Beta (CA)
material cooperation 01, 03, 06, 07 0.80 0.99
verbal cooperation 02, 05, 07-10 0.59 0.55
verbal conflict 11-17 0.23 -0.28
material conflict 18-22 -1.42 -1.27

fit a multinomial logistic regression, sometimes known as the ‘Poisson trick’.) Unsurprisingly, larger
values of N, lead to more precise estimates of x,.

Also not well known is that correspondence analysis (CA, Greenacre, 1993) is a least-squares
version of the same model. Correspondence analysis assumes (Greenacre, 1993, appendix A) that

Cej/N =r1:ci(1—xf85)

where N = Zt N,. (To see that this is an approximation to the Wordfish model, consider taking the
log of both sides.) It has the advantage of being easier to estimate and also allows us to investigate
possible multidimensionality in x.

To fit these models to the Serbia-Bosnia dyad event counts, again in weekly aggregation, I first
aggregate events into the event categories Schrodt recommends working with: material coopera-
tion, verbal cooperation, verbal conflict, and material conflict. Running Wordfish and CA models
on the weekly event counts gives a model with normalised 8 parameters that are interpretable as
event category scores as shown in Table 3.

The parameters order the higher level categories as we would expect if a conflict cooperation
scale had been induced. Further evidence that the model is capturing a conflict cooperation scale is
that the both models’ weekly estimates (x parameters) are highly correlated with weekly average
Goldstein scores (r=0.85, p<.001 for Wordfish and r=0.9, p<0.001 for correspondence analysis).
Figure 3 shows Wordfish and CA estimates against the average weekly Goldstein scores®

3.3 Scale dimensionality

One of the advantages of taking an inductive approach to measurement is the possibility of address-
ing questions of scale dimensionality. Since it seems clear that the main dimension when scaling
weekly event counts is something very close to the Goldstein conflict-cooperation scale, we add
another dimension to see what other structure might be lurking. Table 4 suggests that the second
dimensional distinguishes verbal from material actions.

Finally, Figure 4 shows the category scores in both dimensions and the weeks numbers plotted
between them. Since all weeks are composed of some proportion of each of the event categories
they find positions on the simplex, distances within which are represented approximately in the two
dimensional space defined by the correspondence analysis. The bulk of weeks move up and down
the northwest to south east event axis with occasional forays toward material cooperation towards
the end of the sequence.

Alternative analyses using all the event categories gives a less clear picture due to lack of data.
High levels of aggregation are necessary to get enough covariance information to order event cate-
gories, but this leads to fewer observations. The several hundred weeks in the data set is apparently

SWordfish estimation required a small constant to be added to each count to generate stable scores. However, corre-
spondence analysis (using the corresp function from the R package MASS) worked on this data without any adjustment.
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Weekly estimated Wordfish position
0
!

Weekly average Goldstein score Bosnia—Serbia

Weekly estimated CA position
0
!

Weekly average Goldstein score Bosnia—Serbia

Figure 3: Weekly averaged Goldstein scores versus Wordfish (top) and correspondence analysis
(bottom) estimates.

Table 4: Unit normalised event category parameters (f3) for two dimensional correspondence anal-
ysis (CA) model.

Category CADim.1 CADim. 2
material cooperation 0.99 1.29
verbal cooperation 0.55 -1.01
verbal conflict -0.28 -0.5
material conflict -1.27 0.23
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Figure 4: Week numbers and event categories from a two-dimensional correspondence analysis.
From the top clockwise, the categories in red are verbal cooperation (‘ver.coop’), verbal conflict
(‘ver.conf’), material conflict (‘mat.conf’) and material cooperation (‘mat.coop’).
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not enough to reliably order 110 WEIS categories, and provides a rather messy analysis of the 22
cue categories. However, the success of the scaling analyses seems to confirm that an unfolding
rather than a Guttman scale structure fits event data.

This model can, of course, only be preliminary, because it does not take into account the time
series structure of x. Each week is treated as an independent containing N, event counts.

4 Conclusion

As above, only shorter.
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