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Social scientists are doubly concerned with uncertainty: Formal research methods are designed
to quantify the uncertainty that arises when building theories of an imperfectly predictable social
world. But much of the variability in human behavior that demands these methods is generated by
the judgments that individual society members make in the light of their own uncertainty.

Rational expectations theories in economics are a rare case where the two concerns are explic-
itly related: the price of a stock, a society-level phenomenon, is predicted to evolve randomly over
time because all the available systematic information will have been used by individual investors
to minimize their uncertainty about its value. Any remaining price movement reflects residual
investor uncertainty.

Probability provides the basis for addressing both concerns with uncertainty: Most economic
and political theory assumes that probabilistic inference is a reasonable behavioral model of indi-
vidual decision making in an uncertain world. And uncertainty about particular social scientific
theories is also expressed using probabilities, and the associated machinery of statistics. But prob-
ability is not the only possible choice for quantifying uncertainty, so it is worth considering why it
is a good one.

There are several arguments motivating individuals to use probability theory for managing their
uncertainty. Dutch Book arguments show that individuals who act on their uncertainty in a way
that is inconsistent with probability theory can, in gambling situations, always be fleeced (Ramsey,
1960). A more general motivation for probability was provided by Richard Cox (1946). Cox
showed that for any numerical measure of certainty, plausibility, or confidence in a proposition A
that we might invent, if it has the following properties then it must be a simple rescaling of the
probability that A is true. The properties, expressed in terms of plausibility, are

1. transitivity; if A is more plausible than B, and B is more plausible than C, then A is more
plausible that C.

2. the plausibility of A is a function of the plausibility of not-A. (For example when the more
plausible A is, the less plausible not-A is.)

3. the plausibility of A and B together is a function of the plausibility of A, and the plausibility
of B when A is certain.
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If these properties hold of the measure, then the number we assign to A will be a constant multiple
of the probability of A. If principles 1–3 are accepted as minimum requirements then probability
theory is the correct way to quantify uncertainty. Since Cox’s argument does not depend on whether
the uncertainty being quantified is personal or social scientific, it provides a general motivation
for quantifying uncertainty with probability. Despite the wide application of rational expectations
theories in economics, most psychologists doubt that probability theory is a good descriptive model
of individual reasoning under uncertainty (Tversky and Kahneman, 1974). For example, people
are overconfident relative to available data, and partially neglect the prior probability of events
when they make predictions (base-rate neglect). These psychological facts are not necessarily
problematic for rational expectations theories since individual expectations need only be consistent
with probability theory on average. Nor do they prevent probability-based theories of personal
inference; people may be performing probabilistically correct inference on an incorrect internal
model or be taking into account causal constraints (Cheng, 1997). People also seem to process
information in a way that trades some of the advantages of probabilistically correct inference for
speed, by using an incorrect but less computationally demanding inference process that is only
approximately correct (Gigerenzer and Goldstein, 1996).

The question of whether scientific uncertainty should be quantified in the same way as personal
uncertainty defines the debate in statistics between Frequentists and Bayesians. We focus this
question with two interpretations of a familiar example.

A linear regression model of the relationship between some quantityY and two potentially
explanatory variablesX1 andX2 can be written as

Y = X1β1 + X2β2 + ε

ε ∼ Normal(0, σ2)

In a Bayesian treatment of this model, parameter values are uncertain and this uncertainty is de-
scribed by a Prior probability distribution,p(β1, β2, σ

2). But even if the parameters were known
with certainty, the outcomeY would be uncertain. This uncertainty is factored into a deterministic
part, the additive relationX1β1 + X2β2, and a stochastic part, by assuming a particular probability
distribution for the random variableε. Uncertainty aboutY can be partly reduced by observing
values ofX1 andX2, down to the minimum level determined byε. ε may represent the work of
a truly random social process or our belief that there are variables relevant toY not included in
the model. The equation defines a distribution over outcomesp(Y | β1, β2, σ

2) that is conditional
on particular values of the parameters (and explanatory variables, not shown here). Bayes the-
orem combines these two distributions into a posterior probability distributionp(β1, β2, σ

2 | Y).
The posterior probability distribution combines uncertainty about parameter values and uncertainty
about the value of Y that would persist even if everything else was known. The peak of the pos-
terior is the most probable value for the parameters, and a 95% interval has probability 0.95 of
containing the true value.

The posterior distribution is conditional on the actual value ofY because after the data are ob-
served, their values are known with certainty. Conditioning on the observed data is only possible
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because there is a prior distribution. For Frequentists, it is inappropriate to use prior distributions
in science because it reduces the objectivity of scientific inference. Then probability is restricted
to describing objectively random mechanisms, and uncertainty is confined to states of complete ig-
norance. Under this interpretation,ε describes an objective physically or socially random process,
and the parameters are fixed but completely unknown.

To infer values for the parameters Frequentists choose a function of the availableY-values to be
an estimator and then compute a point estimate and confidence interval. SinceY has a probability
distribution in virtue of containingε, parameter estimates (but not the parameters themselves) also
have a distribution because they are functions of the objectively randomY. Confidence intervals
reflect uncertainty using probability only indirectly: it is the method of interval construction rather
than the interval itself that is associated with a probability, say 0.95. A 95% confidence interval is
an interval computed in such a way that it will contain the true parameter value in 95% of repeated
samples. Since observedY-values cannot be conditioned on, a confidence interval depends on an
infinite number of hypothetical outcomes, values ofY that did not actually occur but could have
done.

Although a definition of probability in terms of repeated samples allows Frequentists to avoid
quantifying levels of uncertainty, it can be problematic. For example, much social science research
is concerned with explaining essentially unique situations where the idea of a repeat sample may
not make sense. In contrast, interpretingε as an uncertainty measure is consistent with any position
on the possibility of repeated sampling, since there will be uncertainty about outcomes in either
case.

As for the uncertainty represented by priors over parameters, it is important to see that a poste-
rior distribution states what it would be rational to believe on the basis of observed data under a set
of prior beliefs. Given a different set, the rational beliefs might well be different. And although the
prior is inevitably subjective, it is explicitly represented, introduces no ambiguity into inference,
and the consequences of changing it may be informative about the information content of the data.

The debate between Frequentists and Bayesians about social scientific inference turns on whether
probability is always the best representation of uncertainty. In other words, whether the benefits
of being able to condition on data that is actually observed, freedom from sampling theoretic con-
straints, and consistency with foundational arguments for probability as a measure of uncertainty,
should outweigh concerns about introducing subjective elements into the process of increasing
scientific knowledge about the social world.
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